Spektroskopia Jader ¹³C i efekt Overhausera

Literatura :

- A. Ejchart, L.Kozerski, Spektrometria Magnetycznego Rezonansu Jądrowego ¹³C. PWN, Warszawa 1988 (1981).
- F.W. Wehrli, T. Wirthlin ; z ang. tł. Karol Jackowski i Wacław Kołodziejski. Interpretacja widm w spektroskopii ¹³ C NMR. PWN, Warszawa 1985.
- 3. D. Neuhaus, M. Williamson "The Nuclear Overhauser Effect" (VCH 1989).

- ¹³C 1.1% spin ½ 125.721 MHz (11.744 T)
- ¹²C 98.9% spin 0 nieaktywny w NMR

- wzorzec: sygnał ¹³C tetrametylosilanu (0 ppm);
- wzorzec wtórny :
 - $CDCl_3$ 77.16 ± 0.06 ppm,
 - DMSO-d₆ 39.52 \pm 0.06 ppm,
 - benzen-d₆ 128.06 ± 0.06 ppm,
 - aceton-d₆ 29.84 \pm 0.06 ppm / 206.26 \pm 0.06 ppm,
 - metanol-d₄ 49.00 ±0.01 ppm.....
- rozpuszczalniki: deuterowane; można używać w mieszaninie z rozpuszczalnikami niedeuterowanymi;
- zakres przesunięć chemicznych: 0 250 ppm;
- krotność (multipletowość) sygnału: zależna od techniki pomiaru;
- typowe widmo ¹³C NMR: sprzężenia J(¹³C- ¹H) usunięte przez odsprzęganie; pozostają inne sprzężenia, np. z ¹⁹F, ³¹P;
- sprzężenia J(¹³C-¹³C) z powodu małej zawartości izotopu ¹³C praktycznie nie mają wpływu na widmo
- intensywność sygnału: zaburzona (NOE, długi czas T1, do kilkudziesięciu sekund.

SYGNAŁY ROZPUSZCZALNIKÓW

	¹³ C	¹ H
Względna naturalna zawartość izotopu (%)	1.11	99.98
Spin I w jednostkach h	1/2	1/2
Współczynnik żyromagnetyczny	0.673	2.675
Częstość Larmora v ₀ w polu magnetycznym 11.5 T	126 MHz	500 MHz
Względna czułość NMR dla jednakowej liczby jąder	1/64	1
Względna czułość NMR przy naturalnej zawartości izotopu	1/5600	1

Czas realaksacji T₁ dla 1 H – kilka sekund, dla 13 C – od kilku do kilkudziesięciu sekund

Liczba sygnałów w widmie ¹³C NMR

Zakresy występowania sygnałów ¹³C NMR

Przesunięcie chemiczne w widmie ¹³C NMR (δ , ppm)

Zmiana przesunięcia chemicznego w ppm

<mark>€</mark> CH₃-	<mark>δ</mark> — CH₂ −	<mark>γ</mark> — CH₂ —	<mark>β</mark> − CH₂ −	α 	— x
0.0	0.2	- 6.6	8.1	70.0	F
- 0.1	- 0.6	- 5.2	10.1	30.5	CI
0.0	- 0.6	- 4.0	10.2	19.2	Br
- 0.1	- 1.0	- 2.0	10.6	- 7.5	I
0.3	0.3	- 2.6	2.4	20.4	соон
0.6	0.6	- 5.8	10.4	4 9.0	он

Elektroujemność efekt ciężkiego atomu

CF4 / CHF3 / CH2F2 / CH	₃ F 120 - 75 ppm
$CCI_4 / CHCI_3 / CH_2CI_2 / CH_2$	l₃CI 100 - 20 ppm
CBr ₄ / CH ₂ Br ₂ / CHBr ₃ / C	H ₃ Br 30 - 7 ppm
$CH_3I \ / \ CH_2I_2 \ / \ CHI_3 \ / \ CI_4$	(- 20) - (-295) ppm

Przesunięcie chemiczne w widmie ¹³C NMR (δ , ppm)

Stała sprzężenia ¹³C- ¹H (Hz)

 ²J –(geminalne): od 0 do 60 Hz (silna zależność od podstawienia i hybrydyzacji, zwykle mała wartość)

 dla związków aromatycznych: ¹J>>³J> ²J>⁴J

•³J –(wicynalna): do 10 Hz (obowiązuje zależność Karplusa)

Stałe sprzężenia ¹³C- ¹³C i inne jądra (Hz)

¹ J(¹³ C- ¹³ C)	¹⁹ F (spin ½)	² H (D) (spin 1)
36.6 etan	¹ J(¹⁹ F- ¹³ C) 160 – 300 Hz	J(¹³ C- ² H) = J(¹³ C- ¹ H) / 6.51
67.0 etylen 56.0 benzen	ⁿ J(¹⁹ F- ¹³ C) 0 – 20 Hz	
171.5 acetylen		Li—C≡C—Li 37 Hz
12.4 cyklopropan	³¹ P (spin ½)	H−C≡C−Li _{61 Hz}
n 1/13C 13C)	. (0011/2)	H-C=C-F 216 Hz
······································	¹ J(³¹ P- ¹³ C) 0 – 250 Hz	F−C≡C−F 293 Hz
kilka-kilkanaście Hz	ⁿ J(³¹ P- ¹³ C) 0 – 20 Hz	

Jądrowy efekt Overhausera (Nuclear Overhauser effect)

Efekt Overhausera – zmiana intensywności sygnału atomu położonego w pobliżu innego atomu naświetlanego jego częstością rezonansową

J(H,H) = 0 Hz (odłegłość duża licząc wiązania) oddziaływanie przez wiązania tzw. Sprzężenie spinowo-spinowe (skalarne);

$$B_{lok}^{DD} = \pm \frac{\mu_{\rm X}}{r^3} \cdot \left(3\cos^2\theta - 1\right)$$

Oddziaływanie dipolowe (sprzężenie dipolowe);

Współczynnik wzmocnienia NOE : $\eta_A \{ X \} = (I-I_0)/I_0$

I- intensywność sygnału rezonansowego jądra A w układzie zaburzonym; I₀- intensywność sygnału rezonansowego jądra A w układzie niezaburzonym;

T1: dla ¹H 0.2 – 2 s lub dłużej

Typowe parametry: ¹H: d1 = 0 s, at = 3 - 5 s, pw = $30 - 90^{\circ}$

- l₀– intensywność integralna sygnału niezaburzonego
- I intensywność integralna sygnału

zaburzonego

η – współczynnik wzmocnienia

 $\eta = (I - I_o)/I_o$

•W widmie NMR bezpośrednio obserwujemy tylko przejścia jednokwantowe $(W_2, W_3 \text{ i } W_1, W_4);$

- przejście dwukwantowe W₂
- przejście zerokwantowe W₀

Generowanie efektu Overhausera dwóch jąder A i X

- (b) stan zaburzony obsadzenie poziomów dla jąder X wyrównane (np. stan nasycenia po absorpcji promieniowania), dla jąder A różnice obsadzeń bez zmian.
- (c) relaksacja dwukwantowa powoduje zwiększenie populacji poziomu αα i odpowiedni spadek dla ββ.
 Zwiększenie różnicy obsadzeń dla przejść jąder A powoduję wzrost intensywności sygnału dodatni efekt NOE.
- (d) relaksacja zerokwantowa powoduje efekt przeciwny zmniejszenie różnicy obsadzeń poziomów αα i αβ oraz βα
 i ββ słabszy sygnał jąder A ujemny efekt NOE.

Wielkość NOE

$$\eta_{\text{maks}} = \gamma_{\text{H}} / \gamma_{\text{H}} * \sigma_{\text{NOE}} / \rho_{\text{H, H}}$$
$$\sigma_{\text{NOE}} = W_2 - W_0 = \frac{\gamma^4 h^2 \tau_{\text{c}}}{4\pi^2 10 r^6} \left(\frac{6}{1 + 4\omega^2 \tau_{\text{c}}^2} - 1\right)^{[\text{s}^{-1}]}$$

- ω częstość rezonansowa ¹H; r- odległość między jądrami;
- τ_c czas korelacji cząsteczki -czas charakteryzujący szybkość z jaką cząsteczka "zapomina"o poprzednich położeniach, im krótszy τ_c tym szybciej znika informacja o poprzednim stanie cząsteczki.
- dla danej $\mathbf{\omega}$ wielkość σ_{NOE} zależy od r⁻⁶ i czasu korelacji τ_{c} ;
- wielkość σ_{NOE} zeruje się dla $\omega \tau_{c} \sim 1.12$;
- dla małych cząsteczek o relatywnie krótkich czasach korelacji (ωτ_c < 1.12) szybkiej reorientacji w przestrzeni dominuje relaksacja dwukwantowa i NOE jest dodatni;
- dla dużych czasów korelacji cząsteczkowej (lub wyższych polach $B_0 (\omega \tau_c > 1.12)$, dominuje relaksacja zerokwantowa i efekt NOE jest ujemny (zmiana znaku).

Zależność η od czasu korelacji cząsteczki

ω - częstość rezonansowa ¹H

 τ_{c} – czas korelacji cząsteczki

(czas charakteryzujący szybkość z jaką cząsteczka "zapomina" o poprzednich położeniach, im krótszy τ_c tym szybciej znika informacja o poprzednim stanie cząsteczki.)

Eksperymenty NOE

•Krótki czas naświetlania: "truncated driven NOE" (TOE);

•długi czas naświetlania: "steady state NOE"

 $d\eta/dt \sim 1/r^6$

•selektywny impuls 180°: "transient NOE"

NOE – warunki przeprowadzenia eksperymentu

Próbka:

- eliminacja zanieczyszczeń paramagnetycznych:
 - -tlenu atmosferycznego rozpuszczonego w roztworze,
 - -kationów metali przejściowych (np. Cr3+ z chromianki),

Odgazowanie próbki:

- przepuszczanie gazu obojętnego mało skuteczne,
- procedura "zamrażanie próżnia rozmrażanie" 3 6 razy
- zastosowanie specjalnej probówki NMR (zatapianie)

Pomiar:

- należy wykonać kilka pomiarów
- brak NOE nie jest potwierdzeniem struktury
- obecność NOE nie jest w pełni potwierdzeniem struktury

Uboczny skutek eksperymentu NOE: usunięcie sygnału z widma

Echo spinowe

Dwie przyczyny zaniku sygnału: czynniki aparaturowe (niejednorodność pola) relaksacja spin-spin

Wektor makroskopowej magnetyzacji

Usuwanie szerokich sygnałów

Wielokrotne echo -CPMG- (Carr-Purcell Meiboom-Gill)

d1- 90x (-d2- 180y -d2-)_n-AQ

Czynniki wpływające (+) i nie wpływające (-) na amplitudę echa

Zastosowania SE i CPMG:

- Element sekwencji wieloimpulsowych
- Wygaszanie szerokich linii
- Unikanie efektów zakłóceń bezpośrednio po impulsie obserwacyjnym
- Pomiar T₂
- Pomiar szybkości dyfuzji
- Pomiar szybkości wymiany chemicznej

I.p.	Czynnik	SE	CPMG
1	Niejednorodność B ₀	1	-
2	Dyfuzja	+	+ -
3	Relaksacja poprzeczna	+	+
4	Relaksacja podłużna	-	-
5	Wymiana chemiczna	+	+-
6	Przesunięcia chemiczne	I.	-
7	J-heterojądrowe	-	-
8	J-homojądrowe	+	+ -

HOMODECOUPLING, ODSPRZĘGANIE

Jądrowy efekt Overhausera (Nuclear Overhauser effect) Dla układu ¹³C-¹H

Wzmocnienie: $(I-I_0)/I_0 = 1.99$

Widmo ilościowe: eliminacja NOE

•pełna relaksacja próbki (D1 = 5*T1; T1 = 2 - 3 s dla CH_n , 30 s i więcej dla C^{IV})

- dodatek substancji przyśpieszającej relaksację ("relaksant", np. Cr(acac)₃) w ilości 1% molowo. Dodatek "relaksanta" uniemożliwia wiele innych pomiarów NMR, np. NOE
- Widmo "półilościowe": pomiar i porównywanie tylko sygnałów CH_n
- Optymalizacja pomiaru ¹³C NMR:

-puls 90° i długi czas D1 – silny sygnał, długi czas repetycji,
-"płaski" puls (<90°) i krótszy czas D1 – słabszy sygnał, krótszy czas repetycji,
-optimum: kąt Ernsta

Zastosowanie sprzężonego widma ¹³C NMR:

Przeniesienie polaryzacji (Polarisation Transfer)

Przeniesienie polaryzacji (Polarisation Transfer)

SPT – Selective Population Transfer **SPI** – Selective Population Inversion

	Stan równowagi	Po impulsie selektywnym 180(H ₂)
p(ββ)	0,25-h-c	0,25+h-c
p(βα)	0,25-h+c	0,25-h+c
p(αβ)	0,25+h-c	0,25-h-c
p(αα)	0,25+h+c	0,25+h+c

	$Int(C_2) = p(\beta \alpha) - p(\beta \beta)$	$Int(C_1) = p(\alpha \alpha) - p(\alpha \beta)$
Stan równowagi	2c	2c
Po selektywnym impulsie 180(H ₂)	2c – 2h	2c + 2h

SPT – Selective Population Transfer

Te zaburzenia są lepiej widoczne na widmie różnicowym

SPT zniekształca intensywności multipletu protonu gdy częstotliwość rezonansowa sprzężonego jądra jest nierównomiernie nasycona

Niezaburzone widmo jest nasycone

INEPT - Insensitive Nuclei Enhanced by Polarization Transfer

Multiplety ¹³C po sekwencji INEPT

Decoupled, refocused INEPT

Widma ¹³C kwasu mrówkowego

Eksperyment DEPT - Distortionless Enhancement by Polarisation Transfer

Optymalizacja •wartość J •kąt α

•E=($\gamma_{\rm H}$ / $\gamma_{\rm C}$) sin α

Znak sygnałów multipletów w widmach DEPT

	DEPT-45	DEPT-90	DEPT-135
XH (CH)	+	+	+
XH_2 (CH ₂)	+	0	-
XH₃ (CH ₃)	+	0	+

α=45°	DEPT 45
90°	DEPT 90
135°	DEPT 135

EKSPERYMENTY INEPT I DEPT

konieczna znajomość stałej sprzężenia ¹³C-¹H (przed pomiarem);

problem w przypadku sprzężeń o małej wartości

Zalety:

— wzrost czułości pomiaru (I / I_o = 3.98)

 $I_{\text{NOE}} = I_o(1 + \gamma_{\text{H}}/2\gamma_{\text{X}}) = I_o(1 \pm \upsilon_{o\text{H}}/2\upsilon_{o\text{X}})$

 $I_{\text{INEPT}} = I_{o} |\gamma_{\text{H}} / \gamma_{\text{X}}| = I_{o} (\upsilon_{o\text{H}} / \upsilon_{o\text{X}})$

— pomiar kontrolowany czasem T₁ wodoru (¹H), a nie węgla (D1 ≈ 2 s)

APT- Attached Proton Test

- wzmocnienie sygnału: NOE, nie ma transferu polaryzacji
- "czas repetycji" określony czasem T₁ dla ¹³C

Ewolucja wektorów namagnesowania jader ¹³C pod wpływem sprzężeń proton-jadro ¹³C

INADEQUATE -Incredible Natural Abundance Double QUAntum Transfer Experiment

Wartości stałych sprzężenia ¹³C-¹³C

Typowy zakres dla stałych sprzężenia C-C przez jedno wiązanie

Grupa C-C	Typowe wartoṡci ¹ J _{CC} (Hz)	
c_c	35-40	
CC(O)	40-60	
C=C (alkene)	70-80	
C=C (aromatic)	55-70	
C≡C	170-220	

Podstawowy czynnik przy określaniu wartości stałejhybrydyzacja atomu węgla

¹J(¹³C-¹³C)

36.6 etan

67.0 etylen

56.0 benzen

171.5 acetylen

12.4 cyklopropan

ⁿJ(¹³C-¹³C)

kilka-kilkanaście Hz

DOSY- Diffusion-Ordered SpectroscopY

Pomiar dyfuzji odbywa się przez obserwację tłumienia sygnałów NMR podczas eksperymentu z gradientem pola impulsowego. Stopień tłumienia jest funkcją gradientu magnetycznego amplitudy impulsu (G) i występuje z szybkością proporcjonalną do współczynnika dyfuzji (D) w cząsteczce.

 $I(f,z) = I_A(f) \exp(-D_A Z)$

$$I = I_0 \exp\left(\frac{-2\tau}{T_2} - (\gamma \delta G)^2 D\left(\Delta - \frac{\delta}{3}\right)\right)$$

Gdzie:

-I -obserwowana intensywność sygnału,

-I₀ - intensywność dla zerowej mocy gradientu,

-G – gradient, - D- współczynnik dyfuzji , - Δ -deley

