Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego

Literatura

- W. Zieliński, A. Rajcy, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych, Wydawnictwa Naukowo-Techniczne, 2000.
- A. R. Silverstein, F. Webster, D. Kiemle, Spektroskopowe metody identyfikacji związków organicznych, Wydawnictwo Naukowe PWN, 2013.
- A. Ejchart, A. Gryff-Keller, NMR w cieczach. Zarys teorii i metodologii, Wydawnictwo: OWPW, 2004.
- A. Ejchart, L. kozerski, Spektrometria magnetycznego rezonansu jadrowego 13C, PWN, 1981.
- H. Gunther, Spektroskopia magnetycznego rezonansu jądrowego, PWN, 1983.
- K. Hausser, H. Kalbitzer, NMR w biologii i medycynie, Wydawnictwo Naukowe UAM, 1993.

Liczba masowa	Liczba atomowa	Spin jądrowy, I	Przykład jądra
nieparzysta	parzysta lub nieparzysta	1/2, 3/2, 5/2	<i>I</i> = 1/2: ¹ H, ¹³ C, ³¹ P, ¹⁹ F, ¹⁵ N
parzysta	parzysta	0	¹² C, ¹⁶ O
parzysta	nieparzysta	1, 2, 3	I = 1: ¹⁴ N, ² H

Liczba dozwolonych orientacji względem pola magnetycznego dla izolowanego jądra:

N = 2I + 1

rzut spinu na kierunek wektora **B**_o

$$I_z = m_I$$

 $m_{\rm I} = -I, -I+1, \dots, I-1, I$

$$E = \mu_{\Sigma} \cdot B_o = \gamma \hbar m_I B_o$$

Dla jąder ¹H (I = ¹/₂):
$$m_I = +1/2 \text{ i } m_I = -1/2$$

$$E_{\alpha} = -1/2 \gamma \hbar B_o \qquad E_{\beta} = +1/2 \gamma \hbar B_o$$

$$\Delta E = \hbar \gamma B_o = (\hbar/2\pi) \gamma B_o \quad \text{oraz} \quad \Delta E = \hbar \nu$$

$$(\hbar/2\pi) \gamma B_o = h \nu$$

$$\nu = (1/2\pi) \gamma B_o = \nu_L$$

Jądro	Spin I	Zawarto ść naturalna [%]	Cz ę stotliwość rezonansowa [MHz] (Bo=2,3488 T)	Współczynnik magnetogiryczny γ [10 ⁷ rad T ⁻¹ s ⁻¹]
¹ H	1/2	99,98	100,000	26,7519
² H	1	0,016	15,351	4,1066
¹² C	0	98,90	-	-
¹³ C	1/2	1,108	24,144	6,7283
¹⁴ N	1	99,63	7,224	1,9338
¹⁵ N	1/2	0,37	10,133	-2,712
¹⁶ O	0	99,96	-	-
¹⁷ O	5/2	0,037	13,5	3,6264
¹⁹ F	1/2	100,00	94,077	25,181
²⁹ Si	1/2	4,70	19,865	-5,3188
³¹ P	1/2	100,00	40,481	10,841

Źródła ekranowania...

DEFINICJA SKALI WIDM ¹H NMR H1 H2 TMS TMS Ppm 8 7 6 5 4 3 2 1 0

800

400

 $TMS = Si(CH_3)_4$

0

>Przesunięcie chemiczne, δ

Hz 1600

>Różnica przesunięcia chemicznego, $\Delta\delta$

1200

Jądro	Wzorzec przesunięcia chemicznego (δ = 0,0 ppm)
¹ H	Me ₄ Si
¹³ C	Me ₄ Si
14 N	MeNO ₂ lub NO ₃ ⁻
$^{15}\mathrm{N}$	MeNO ₂ lub NO ₃ ⁻
¹⁷ O	H ₂ O
¹⁹ F	CCl ₃ F
²⁹ Si	Me ₄ Si
³¹ P	85% H ₃ PO ₄
³³ S	CS ₂ or SO ₄ ^{2–}

	δ = 0,0 ppm
¹ H i ¹³ C	DSS (kwas 2,2-dimetylo-2-silapentano-5-sulfonowy)
	TSP (3-(trimetylosililo)-propianosulfonian sodu)

Rozpuszczalnik	Wzór	δ _H [ppm] związku monoprotonowanego
Chloroform -d	CDCl ₃	7,26
Sulfotlenek dimetylowy-d ₆	(CD ₃) ₂ SO	2,49
Acetonitryl-d ₃	CD ₃ CN	1,95
Aceton-d ₆	(CD ₃) ₂ CO	2,05
Benzen-d ₆	C_6D_6	7,28
"Ciężka woda"	D ₂ O	4,72
Kwas trifluorooctowy-d	CF ₃ CO ₂ D	11,6

Stała sprzężenia spinowo-spinowego

- Podobnie jak w przypadku oddziaływania spinu jądrowego z zewnętrznym polem magnetycznym (przesunięcie chemiczne), oddziaływanie miedzy dwoma spinami jądrowymi *i* i *j* określane jako *stała sprzężenia*, można podzielić na na dwa typy oddziaływań:
- Pośrednie sprzężenie spinowo-spinowe (skalarne) gdzie ⁿJ_{A,B}, stała sprzężenia spinowo-spinowego to odległość w hercach dwóch lini powstałych w wyniku sprzężenia spinowo-spinowego między jądrami A i B przez n wiązań łączących te jądra.
- Bezpośrednie sprzężenie diolowe *D* stała sprzężenia dipolowego, (efekt Overhausera)
- W cieczach zachodzi szybka izotropowa reorientacja następuje uśrednienia anizotropowych części oddziaływań i nie obserwuje się oddziaływań dipolowych

Podstawowe cechy sprzężeń spinowo-spinowych

Np. ²J_{H2,H3} [Hz]

- Niezależność od pola magnetycznego.
- Wzajemność.
- Zależność od trwałości kontaktu pomiędzy sprzężonymi jądrami.
- Zależność od momentu magnetycznego jąder.
- W celu umożliwienia porównania stałych sprzężenia różnych par jąder zdefiniowano zredukowaną stałą sprzężenia:

 $J_{AB} = (1/h)(\gamma_A/2\pi)(\gamma_B/2\pi)K_{AB}$ $J_{XH}/J_{XD} = \gamma_H/\gamma_D = 6,514$

Proste reguły interpretacji subtelnej struktury widma

- Dla jąder o spinowej liczbie kwantowej I = 1/2 *multipletowość* wynosi *n* + 1, przy czym *n* jest liczbą jąder w grupie sąsiedniej. Jeżeli w sąsiedztwie jest kilka grup różniących się przesunięciem chemicznym, to trzeba je rozpatrywać oddzielnie, przy czym przyjęta kolejność nie wpływa na wynik końcowy. Jeśli zatem jądro H_M sąsiaduje z dwoma różnymi chemicznie jądrami H_A i H_X , to jego sygnał rozpada się na dublet dubletów. Tryplet wystąpi tylko wtedy, gdy przypadkowo $J_{AM} = J_{MX}$.
- Odległości linii (w hercach) odpowiadają stałej sprzężenia.
- Względne natężenia linii multipletu mają się do siebie jak współczynniki dwumianu:

$$1:\frac{n}{1}:\frac{n(n-1)}{2\cdot 1}:\frac{n(n-1)(n-2)}{3\cdot 2\cdot 1}.$$

Proste reguły interpretacji subtelnej struktury widma

Trójkąt Pascala:

- Wartość stałej sprzężenia maleje na ogół ze wzrostem odległości między jądrami. Gdy wielkość rozszczepienia stanie się porównywalna z naturalną szerokością linii, sprzężenie znika.
- Typ rozszczepienia nie zależy od znaku stałej sprzężenia. Trzeba go więc określać innymi metodami.

MULTIPLETOWOŚĆ (krotność) SYGNAŁÓW (2nI+1)

Typ układu Spinowego Notacja Pople'a	Wygląd widma protonów A	Nazwa (multiplet)	Przykład
A ₃		singlet (s)	CH ₃ I
A ₃ X		dublet (d)	CH ₃ CHO
A ₃ X ₂		tryplet (t)	CH ₃ CH ₂ OR
A ₂ X ₃	33 1 _J _J _J 1 	kwartet (q)	CH ₃ CH ₂ OH
AX ₆	20 15 15 1 ⁶ 6 ₁	septet	CH ₃ CHICH ₃

pik	δ/ppm	Intensywność	
1	7.823	171406	$\operatorname{pro}^{\dagger}$
2	7.366	181272	1
3	7.310	109783	2
4	7.270	119712	3
5	6.394	134046	4
6	6.354	122984	

1H NMR, 400MHz, D₂O, pH 7,4 (bufor fosforanowy) Kwas urokanowy w chorobie Kwashiorkor

Granice stosowalności prostych reguł rozszczepienia

- Sprzężenie spinowo-spinowe pomiędzy jądrami równocernnymi magnetycznie nie uwidocznia się w widmie. Termin równocenne magnetycznie oznacza jądra o tej samej częstotliwości rezonansowej i o tej samej stałej sprzężenia z jądrami grup sąsiednich. Jądra równocenne magnetycznie są zawsze równocenne chemicznie. Równocenność chemiczna jednak nie zawsze pociąga za sobą równocenność magnetyczną. Jądra równocenne magnetycznie określa się także mianem izochronowych.
- Sformułowane reguły interpretacji struktury subtelnej widm NMR mają zastosowanie tylko do jąder równocennych magnetycznie. Jeżeli istnieje nierównocenność magnetyczna, to nie można już odczytać poszczególnych stałych sprzężenia bezpośrednio z widma.

Granice stosowalności prostych reguł rozszczepienia

Znaczenie stosunku $(v_i - v_j) / J$

- Reguły pierwszego rzędu ograniczają się do przypadków, w których względne przesunięcie chemiczne (v_i -v_j) (Hz) sprzęgających się grup magnetycznie równocennych jąder jest duże w stosunku do ich stałej sprzężenia. Mówimy wówczas o widmie pierwszego rzędu.
- Jeżeli wartość (v_i -v_j) jest tego samego rzędu co J, to w widmie obserwuje się więcej linii, niż możnaby się spodziewać na podstawie reguł pierwszego rzędu
- Zmienia się wówczas także rozkład natężeń linii w multipletach. Natężenie linii zbliżonych najbardziej do multipletu sprzężonego wzrasta kosztem linii najbardziej oddalonych. Jest to *efekt dachowy.*
- Zwiększona multipletowość i zmieniony rozkład natężeń są więc cechami <u>widm wyższych rzędów</u>, które muszą być analizowane metodami dokładnymi.
- na widma wyższych rzędów ma wpływ jeszcze względny znak stałej sprzężenia (jeśli mamy do czynienia z układem większym niż dwuspinowy).

Nazewnictwo układów spinowych

- W zależności od relacji symetrii między sprzężonymi skalarnie spinami oraz siły sprzężenia, krotności i intensywności składowych multipletów (pojawiających się na skutek sprzężeń skalarnych) przejawiają się w różny sposób- klasyfikacja układów spinowych:
- Grupę **n** izochronowych spinów, nie wykazujących nierównocenności sprzężeń spinowych oznaczamy A_{n} .
- Jeśli izochronowe spiny wykazują nierównocenność sprzężeń spinowych, to oznaczane są symbolem **AA'A"...**
- Grupa anizochronowych spinów, między którymi występują jedynie słabe sprzężenia spinowo-spinowe, są oznaczane odległymi literami alfabetu $A_k M_l X_m$.
- Grupy silnie sprzężonych spinów anizochronowych są oznaczone kolejnymi literami alfabetu $\mathbf{A_kB_lC_m}.$

PODSTAWNIKI DIASTEREOTOPOWE

